Multi-Path Feedback Recurrent Neural Networks for Scene Parsing
نویسندگان
چکیده
In this paper, we consider the scene parsing problem and propose a novel MultiPath Feedback recurrent neural network (MPF-RNN) for parsing scene images. MPF-RNN can enhance the capability of RNNs in modeling long-range context information at multiple levels and better distinguish pixels that are easy to confuse. Different from feedforward CNNs and RNNs with only single feedback, MPFRNN propagates the contextual features learned at top layer through weighted recurrent connections to multiple bottom layers to help them learn better features with such “hindsight”. For better training MPF-RNN, we propose a new strategy that considers accumulative loss at multiple recurrent steps to improve performance of the MPF-RNN on parsing small objects. With these two novel components, MPF-RNN has achieved significant improvement over strong baselines (VGG16 and Res101) on five challenging scene parsing benchmarks, including traditional SiftFlow, Barcelona, CamVid, Stanford Background as well as the recently released large-scale ADE20K.
منابع مشابه
Multi-Path Feedback Recurrent Neural Network for Scene Parsing
In this paper, we consider the scene parsing problem. We propose a novel Multi-Path Feedback recurrent neural network (MPF-RNN) to enhance the capability of RNNs on modeling long-range context information at multiple levels and better distinguish pixels that are easy to confuse in pixel-wise classification. In contrast to CNNs without feedback and RNNs with only a single feedback path, MPFRNN p...
متن کاملGeometric Scene Parsing with Hierarchical LSTM
This paper addresses the problem of geometric scene parsing, i.e. simultaneously labeling geometric surfaces (e.g. sky, ground and vertical plane) and determining the interaction relations (e.g. layering, supporting, siding and affinity) between main regions. This problem is more challenging than the traditional semantic scene labeling, as recovering geometric structures necessarily requires th...
متن کاملHierarchical Feature For Scene Parsing Using Fully Recurrent Network
In scene parsing, the wide-range contextual information is not effectively encoded. Scene parsing provides segmentation and determines an scene into different regions associated with semantic categories. The main objective of scene parsing is to reduce semantic gap between humans and computer machines on scene understanding. The scenes parsing applications are object detection, text detection o...
متن کاملA vector matrix real time backpropagation algorithm for recurrent neural networks that approximate multi-valued periodic functions
A vector matrix real time backpropagation algorithm for recurrent neural networks that approximate multi-valued periodic functions," Received Unlike feedforward neural networks (FFNN) which can act as universal function ap-proximators, recursive, or recurrent, neural networks can act as universal approximators for multi-valued functions. In this paper, a real time recursive backpropagation (RTR...
متن کاملEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کامل